×Vollbild
×

Dezibel

Fehler melden

Das Dezibel (dB) verstehen

Das Dezibel begegnet dir im Amateurfunk überall: S-Meter-Anzeigen, Verstärkerangaben, Kabeldämpfungen, Antennengewinn. Diese Lerneinheit erklärt dir, wie du mit dB rechnest - ohne Angst vor Logarithmen!

Stell dir vor: Du steigst eine Treppe hinauf. Jede Stufe verdoppelt deine "Leistung". Nach 1 Stufe (3 dB) hast du doppelt so viel, nach 2 Stufen (6 dB) viermal so viel, nach 3 Stufen (9 dB) achtmal so viel.

Oder denk an die Richterskala für Erdbeben: Ein Beben der Stärke 6 ist nicht "doppelt so stark" wie Stärke 3 - sondern tausendmal stärker! Genau so funktioniert Dezibel: Kleine Zahlen beschreiben riesige Unterschiede.

Warum brauchen wir Dezibel?

Im Amateurfunk arbeiten wir mit riesigen Verhältnissen:

  • Dein Empfänger verarbeitet Signale von 0,000001 Watt bis 1 Watt - Faktor 1.000.000!
  • Ein Sender mit Endstufe verstärkt von 1 W auf 1000 W - Faktor 1000

Solche Zahlen sind unhandlich. Mit Dezibel wird daraus:

  • Faktor 1.000.000 = 60 dB
  • Faktor 1000 = 30 dB

Der Clou: Verstärkungen werden einfach addiert statt multipliziert!

Die Grundformeln

GrößeFormelFaktor
Leistungsverhältnis$\text{dB} = 10 \cdot \log_{10}\left(\frac{P_2}{P_1}\right)$10
Spannungsverhältnis$\text{dB} = 20 \cdot \log_{10}\left(\frac{U_2}{U_1}\right)$20
Warum 10 vs. 20?
Leistung ist proportional zum Quadrat der Spannung ($P \sim U^2$). Daher: Bei Spannung verdoppelt sich der dB-Wert → Faktor 20 statt 10.

Die wichtigsten dB-Werte auswendig lernen

Diese Werte musst du im Schlaf können - sie kommen in fast jeder Prüfungsfrage vor:

dBLeistungsfaktorSpannungsfaktorMerkhilfe
0 dB11Keine Änderung
3 dB2≈ 1,41Leistung verdoppelt
6 dB42Spannung verdoppelt
10 dB10≈ 3,16Leistung × 10
20 dB10010Leistung × 100
30 dB1000≈ 31,6Leistung × 1000

Fragen AA105, AA106: dB-Werte kombinieren

Du kannst dB-Werte zerlegen und addieren:

16 dB = 10 dB + 6 dB → Faktor 10 × 4 = 40

Frage AA105: Einer Leistungsverstärkung von 40 entsprechen wie viel dB?

Lösung: 40 = 10 × 4 → 10 dB + 6 dB = 16 dB

Frage AA106: Verstärker mit 16 dB, Eingang 1 W → Ausgang?

Lösung: 16 dB = Faktor 40 → 1 W × 40 = 40 W

Absolute Pegel: dBm und dBW

Reines "dB" ist nur ein Verhältnis. Für absolute Leistungswerte brauchen wir einen Bezugspunkt:

dBm
Bezug: 1 mW
0 dBm = 1 mW
30 dBm = 1 W
dBW
Bezug: 1 W
0 dBW = 1 W
10 dBW = 10 W

Umrechnung: $\text{dBm} = \text{dBW} + 30$ (weil 1 W = 1000 mW = 30 dB mehr)

Frage AA110: dBm-Werte zum Merken

LeistungdBmHerleitung
1 mW0 dBmBezugspunkt
2 mW3 dBmVerdopplung = +3 dB
10 mW10 dBm× 10 = +10 dB
100 mW20 dBm× 100 = +20 dB
1 W30 dBm× 1000 = +30 dB

Frage AA110 fragt: Welcher Leistung entsprechen 0 dBm, 3 dBm und 20 dBm?

Antwort: 1 mW, 2 mW, 100 mW ✓

Frage AA108: dBW als Potenz

LeistungdBWAls Potenz
1 W0 dBW$10^0$ W
10 W10 dBW$10^1$ W
100 W20 dBW$10^2$ W
1000 W30 dBW$10^3$ W

Frage AA108 fragt: 20 dBW entspricht welcher Leistung?

Antwort: $10^2$ W = 100 W ✓

Fragen AA107, AA109: Sender + Endstufe

Gegeben: Sender 1 W, Endstufe +10 dB

Rechenbeispiel:

Schritt 1: 1 W in Pegel umrechnen
$1\,\text{W} = 0\,\text{dBW} = 30\,\text{dBm}$

Schritt 2: Verstärkung addieren
In dBW: $0\,\text{dBW} + 10\,\text{dB} = \mathbf{10\,\text{dBW}}$ (Frage AA107)
In dBm: $30\,\text{dBm} + 10\,\text{dB} = \mathbf{40\,\text{dBm}}$ (Frage AA109)

Probe: $10\,\text{dBW} = 10\,\text{W}$ ✓ (10 dB = Faktor 10)

Frage AA111: Spannungsverhältnis berechnen

Gegeben: Spannungsverhältnis = 15

Rechenbeispiel:

Formel: $\text{dB} = 20 \cdot \log_{10}\left(\frac{U_2}{U_1}\right)$

$\text{dB} = 20 \cdot \log_{10}(15) = 20 \times 1{,}176 \approx \mathbf{23{,}5\,\text{dB}}$

Warum sind die anderen Antworten falsch?

  • 15 dB - Das wäre Faktor 15 bei Leistung, nicht Spannung
  • 54 dB - Viel zu hoch
  • 11,7 dB - Das wäre $10 \cdot \log(15)$, also die Leistungsformel

Das S-Meter: dB im Empfänger

Das S-Meter zeigt die Signalstärke in S-Stufen an:

Merkregel S-Meter:
  • 1 S-Stufe = 6 dB (= Spannungsverdopplung)
  • S9 = Referenzpunkt (50 µV an 50 Ω bei KW)
  • Über S9: Angabe in dB (z.B. "S9 + 20 dB")

Frage AA113: S4 zu S7

Rechenbeispiel:

Unterschied: $7 - 4 = 3$ S-Stufen
$3 \times 6\,\text{dB} = \mathbf{18\,\text{dB}}$

Frage AA114: S9+20 dB zu S8

Rechenbeispiel:

Von S9+20 dB nach S9: $-20\,\text{dB}$
Von S9 nach S8: $-6\,\text{dB}$ (1 S-Stufe)
Gesamt: $\mathbf{26\,\text{dB}}$

Frage AA112: Feldstärke in dBµV/m

Elektrische Feldstärke wird in dBµV/m angegeben:

Formel: $\text{dB}\mu\text{V/m} = 20 \cdot \log_{10}\left(\frac{E}{1\,\mu\text{V/m}}\right)$

Rechenbeispiel: $120\,\text{dB}\mu\text{V/m} = ?\,\text{V/m}$

Schritt 1: $120 = 20 \cdot \log_{10}(x)$ → $\log_{10}(x) = 6$
Schritt 2: $x = 10^6 = 1.000.000$
Ergebnis: $E = 1.000.000\,\mu\text{V/m} = \mathbf{1\,\text{V/m}}$
Tipp für die Prüfung: Bei dBµV/m immer durch 20 teilen (Spannungsformel!). $120 \div 20 = 6 \rightarrow 10^6\,\mu\text{V/m} = 1\,\text{V/m}$. Bei $60\,\text{dB}\mu\text{V/m}$ wären es $10^3\,\mu\text{V/m} = 1\,\text{mV/m}$.

Zusammenfassung für die Prüfung

FrageThemaRichtige Antwort
AA105Leistungsverstärkung 40 in dB16 dB
AA10616 dB Verstärker, 1 W Eingang40 W
AA1071 W + 10 dB in dBW10 dBW
AA10820 dBW als Potenz$10^2$ W
AA1091 W + 10 dB in dBm40 dBm
AA1100, 3, 20 dBm in mW1 mW, 2 mW, 100 mW
AA111Spannungsverhältnis 15 in dB23,5 dB
AA112120 dBµV/m in V/m1 V/m
AA113S4 zu S7 Unterschied18 dB
AA114S9+20 dB zu S8 Absenkung26 dB
Die goldenen Regeln:
  • 3 dB = Leistung × 2
  • 6 dB = Leistung × 4 = Spannung × 2 = 1 S-Stufe
  • 10 dB = Leistung × 10
  • 20 dB = Leistung × 100 = Spannung × 10
  • dBm = dBW + 30
  • Leistung: Faktor 10 | Spannung: Faktor 20

Wissenskontrolle

0 / 10 Fragen richtig
AA105

Einer Leistungsverstärkung von 40 entsprechen ...

Alle Funktionen nutzen

Registriere dich kostenlos, um alle 10 Fragen zu üben, deinen Fortschritt zu speichern und schwierige Fragen zu markieren.

Kostenlos registrieren

Bereits registriert? Anmelden

AA106

Ein HF-Leistungsverstärker hat eine Verstärkung von 16 dB mit maximal 100 W Ausgangsleistung. Welche HF-Ausgangsleistung ist zu erwarten, wenn der Verstärker mit 1 W HF-Eingangsleistung angesteuert wird?

AA107

Ein Sender mit 1 W Ausgangsleistung ist an eine Endstufe mit einer Verstärkung von 10 dB angeschlossen. Wie groß ist der Ausgangspegel der Endstufe?

AA108

Der Ausgangspegel eines Senders beträgt 20 dBW. Dies entspricht einer Ausgangsleistung von ...

AA109

Ein Sender mit 1 W Ausgangsleistung ist an eine Endstufe mit einer Verstärkung von 10 dB angeschlossen. Wie groß ist der Ausgangspegel der Endstufe?

AA110

Welcher Leistung entsprechen die Pegel 0 dBm, 3 dBm und 20 dBm?

AA111

Einem Spannungsverhältnis von 15 entsprechen ...

AA112

Der Pegelwert 120 dB$μ$V/m entspricht einer elektrischen Feldstärke von ...

AA113

Wie groß ist der Unterschied zwischen den S-Stufen S4 und S7 in dB?

AA114

Wie stark ist die Empfängereingangsspannung abgesunken, wenn die S-Meter-Anzeige durch Änderung der Ausbreitungsbedingungen von S9+20 dB auf S8 zurückgeht? Die Empfängereingangsspannung sinkt um ...

← Vorherige LerneinheitKapitelübersichtNächste Lerneinheit →
×Vollbild